Câu hỏi
Cho \(A = \left\{ {x \in R|\left| {mx - 3} \right| = mx - 3} \right\};\,\,B = \left\{ {x \in R|{x^2} - 4 = 0} \right\}\). Tìm m để \(B\backslash A = B\).
- A \( - \frac{3}{2} \le m \le \frac{3}{2}\)
- B \(m < \frac{3}{2}\)
- C \( - \frac{3}{2} < m < \frac{3}{2}\)
- D \(m \ge \frac{{ - 3}}{2}\)
Phương pháp giải:
Để \(B\backslash A = B\)
TH1: \(A = \emptyset \)
TH2: \(A \not\subset B\).
Lời giải chi tiết:
Ta có:
\(\begin{array}{l}A = \left\{ {x \in R|\left| {mx - 3} \right| = mx - 3} \right\} = \left\{ {x \in R|mx - 3 \ge 0} \right\}\\B = \left\{ {x \in R|{x^2} - 4 = 0} \right\} = \left\{ {2; - 2} \right\}\end{array}\)
Để \(B\backslash A = B\)
TH1: \(A = \emptyset \Leftrightarrow mx - 3 < 0 \Leftrightarrow m < \frac{3}{x}\,\,\left( {x \in R} \right) \Rightarrow A \ne \emptyset \)
TH2: \(A \not\subset B \Leftrightarrow \left\{ \begin{array}{l}2x - 3 < 0\\ - 2x - 3 < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x < \frac{3}{2}\\x > \frac{{ - 3}}{2}\end{array} \right. \Leftrightarrow - \frac{3}{2} < x < \frac{3}{2}\).
Chọn C.