Câu hỏi
Đồ thị hàm số \(y = \frac{{\sqrt {9 - {x^2}} }}{{{x^2} - 6x + 8}}\) có bao nhiêu đường tiệm cận?
- A 4
- B 3
- C 2
- D 1
Phương pháp giải:
* Định nghĩa tiệm cận ngang của đồ thị hàm số \(y = f(x)\).
Nếu \(\mathop {\lim }\limits_{x \to + \infty } f(x) = a\,\)hoặc\(\,\mathop {\lim }\limits_{x \to - \infty } f(x) = a \Rightarrow y = a\) là TCN của đồ thị hàm số.
* Định nghĩa tiệm cận đứng của đồ thị hàm số \(y = f(x)\).
Nếu \(\mathop {\lim }\limits_{x \to {a^ + }} f(x) = + \infty \,\)hoặc \(\mathop {\lim }\limits_{x \to {a^ + }} f(x) = - \infty \,\)hoặc \(\mathop {\lim }\limits_{x \to {a^ - }} f(x) = + \infty \,\)hoặc \(\mathop {\lim }\limits_{x \to {a^ - }} f(x) = - \infty \,\)thì \(x = a\) là TCĐ của đồ thị hàm số.
Lời giải chi tiết:
TXĐ: \(D = \left[ { - 3;3} \right]{\rm{\backslash }}\left\{ 2 \right\}\)
Ta có: \(y = \frac{{\sqrt {9 - {x^2}} }}{{{x^2} - 6x + 8}}\)
\(\mathop {\lim }\limits_{x \to {2^ + }} y = - \infty ,\,\,\,\mathop {\lim }\limits_{x \to {2^ - }} y = + \infty \Rightarrow \) Đồ thị hàm số có 1 TCĐ \(x = 2\)
Đồ thị hàm số không có TCN.
Chọn: D