Câu hỏi
Cho biểu thức \(B = \left( {\frac{{2x + 1}}{{\sqrt {{x^3}} - 1}} - \frac{{\sqrt x }}{{x + \sqrt x + 1}}} \right).\left( {\frac{{1 + \sqrt {{x^3}} }}{{1 + \sqrt x }} - \sqrt x } \right)\) với \(x \ge 0\) và \(x \ne 1\). Tính B khi \(x = 9\)
- A \(B = 1\).
- B \(B = 2\).
- C \(B = 3\).
- D \(B = 5\).
Phương pháp giải:
+) Tìm điều kiện xác định của biểu thức.
+) Sử dụng biểu thức liên hợp.
+) Đặt nhân tử chung.
+) Rút gọn các phân thức trước khi tiến hành tính toán.
Lời giải chi tiết:
ĐKXĐ: \(x \ge 0\) và \(x \ne 1\)
\(\begin{array}{l}B = \left( {\frac{{2x + 1}}{{\sqrt {{x^3}} - 1}} - \frac{{\sqrt x }}{{x + \sqrt x + 1}}} \right).\left( {\frac{{1 + \sqrt {{x^3}} }}{{1 + \sqrt x }} - \sqrt x } \right)\\ = \frac{{2x + 1 - \sqrt x \left( {\sqrt x - 1} \right)}}{{\left( {\sqrt x - 1} \right).\left( {x + \sqrt x + 1} \right)}}.\left[ {\frac{{\left( {\sqrt x + 1} \right)\left( {x - \sqrt x + 1} \right)}}{{\sqrt x + 1}} - \sqrt x } \right]\\ = \frac{{2x + 1 - x + \sqrt x }}{{\left( {\sqrt x - 1} \right).\left( {x + \sqrt x + 1} \right)}}.\left( {1 - 2\sqrt x + x} \right)\\ = \frac{{x + \sqrt x + 1}}{{\left( {\sqrt x - 1} \right).\left( {x + \sqrt x + 1} \right)}}.{\left( {\sqrt x - 1} \right)^2} = \sqrt x - 1\end{array}\)
Ta có \(B = \sqrt x - 1\)
Với \(x = 9\) thỏa mãn điều kiện suy ra \(B = \sqrt x - 1 = \sqrt 9 - 1 = 3 - 1 = 2\).
Vậy khi \(x = 9\) thì \(B = 2\).