Câu hỏi
Một sợi dây đàn hồi căng ngang, đang có sóng dừng ổn định. Trên dây N là một điểm nút, B là một điểm bụng gần N nhất. NB = 25 cm, gọi C là một điểm trên NB có biên độ \({A_C} = \frac{{{A_B}\sqrt 3 }}{2}\). Khoảng cách NC là
- A 50/3 cm
- B 40/3 cm
- C 50 cm
- D 40 cm
Lời giải chi tiết:
Giả sử bụng sóng ta xét là bụng đầu tiên tình từ đầu phản xạ B, khoảng cách BN = x. ta có
\(\begin{array}{l}
{A_B} = 2a.|\sin \frac{{2\pi d}}{\lambda }| = 2a\\
{A_N} = 2a.|\sin \frac{{2\pi (d + x)}}{\lambda }| = a\sqrt 3 \\
= > |\sin \frac{{2\pi (d + x)}}{\lambda }| = \frac{{\sqrt 3 }}{2} = |\sin \frac{{2\pi }}{3}|\\
d = 25cm,\lambda = 100cm\\
= > x = \frac{{25}}{3}cm\\
= > CN = 25 - \frac{{25}}{3} = \frac{{50}}{3}cm
\end{array}\)