Câu hỏi
Tính giá trị biểu thức \(M = {2^{2016}}C_{2017}^1 + {2^{2014}}C_{2017}^3 + {2^{2012}}C_{2017}^5 + ... + {2^0}C_{2017}^{2017}\).
- A \(\frac{1}{2}\left( {{3^{2107}} - 1} \right)\).
- B \(\frac{1}{2}\left( {{3^{2107}} + 1} \right)\).
- C \(\frac{1}{2}\left( {{2^{2107}} - 1} \right)\).
- D \(\frac{1}{2}\left( {{2^{2107}} + 1} \right)\).
Phương pháp giải:
Áp dụng Công thức khai triển nhị thức Newton: \({(x + y)^n} = \sum\limits_{i = 0}^n {C_n^i{x^i}.{y^{n - i}}} \).
Lời giải chi tiết:
Ta có: \({\left( {x + 2} \right)^{2017}} = C_{2017}^0{x^0}{2^{2017}} + C_{2017}^1{x^1}{2^{2016}} + C_{2017}^3{x^3}{2^{2015}} + ... + C_{2017}^{2017}{x^{2017}}{2^0}\)
\({\left( {x - 2} \right)^{2017}} = - C_{2017}^0{x^0}{2^{2017}} + C_{2017}^1{x^1}{2^{2016}} - C_{2017}^3{x^3}{2^{2015}} + ... + C_{2017}^{2017}{x^{2017}}{2^0}\)
Cho \(x = 1\), suy ra:
\({3^{2017}}\,\,\,\,\,\,\,\,\, = C_{2017}^0{2^{2017}} + C_{2017}^1{2^{2016}} + C_{2017}^3{2^{2015}} + ... + C_{2017}^{2017}{2^0}\)
\({\left( { - 1} \right)^{2017}} = - C_{2017}^0{2^{2017}} + C_{2017}^1{2^{2016}} - C_{2017}^3{2^{2015}} + ... + C_{2017}^{2017}{2^0}\)
\(\begin{array}{l} \Rightarrow {3^{2017}} - 1 = 2\left( {{2^{2016}}C_{2017}^1 + {2^{2014}}C_{2017}^3 + {2^{2012}}C_{2017}^5 + ... + {2^0}C_{2017}^{2017}} \right)\\ \Rightarrow M = {2^{2016}}C_{2017}^1 + {2^{2014}}C_{2017}^3 + {2^{2012}}C_{2017}^5 + ... + {2^0}C_{2017}^{2017} = \frac{{{3^{2017}} - 1}}{2}\end{array}\)
Chọn: A