Câu hỏi
Tìm số đường tiệm cận của đồ thị hàm số \(y = \frac{{5x + 11}}{{\sqrt {3{x^2} + 2017} }}\).
- A 1
- B 4
- C 2
- D
3
Phương pháp giải:
Phương pháp:
* Định nghĩa tiệm cận ngang của đồ thị hàm số \(y = f(x)\).
Nếu \(\mathop {\lim }\limits_{x \to + \infty } f(x) = a\,\)hoặc\(\,\mathop {\lim }\limits_{x \to - \infty } f(x) = a \Rightarrow y = a\) là TCN của đồ thị hàm số.
* Định nghĩa tiệm cận đứng của đồ thị hàm số \(y = f(x)\).
Nếu \(\mathop {\lim }\limits_{x \to {a^ + }} f(x) = + \infty \,\)hoặc \(\mathop {\lim }\limits_{x \to {a^ + }} f(x) = - \infty \,\)hoặc \(\mathop {\lim }\limits_{x \to {a^ - }} f(x) = + \infty \,\)hoặc \(\mathop {\lim }\limits_{x \to {a^ - }} f(x) = - \infty \,\)thì \(x = a\)
là TCĐ của đồ thị hàm số.
Lời giải chi tiết:
TXĐ: \(D = R\)
\(\mathop {\lim }\limits_{x \to + \infty } \frac{{5x + 11}}{{\sqrt {3{x^2} + 2017} }} = \mathop {\lim }\limits_{x \to + \infty } \frac{{5 + \frac{{11}}{x}}}{{\sqrt {3 + \frac{{2017}}{{{x^2}}}} }} = \frac{5}{{\sqrt 3 }};\,\,\,\,\,\mathop {\lim }\limits_{x \to - \infty } \frac{{5x + 11}}{{\sqrt {3{x^2} + 2017} }} = \mathop {\lim }\limits_{x \to - \infty } \frac{{5 + \frac{{11}}{x}}}{{ - \sqrt {3 + \frac{{2017}}{{{x^2}}}} }} = - \frac{5}{{\sqrt 3 }}\)
Đồ thị hàm số \(y = \frac{{5x + 11}}{{\sqrt {3{x^2} + 2017} }}\) có 2 đường tiệm cận là \(y = \frac{5}{{\sqrt 3 }},\,\,y = - \frac{5}{{\sqrt 3 }}\).
Chọn: C