Câu hỏi
Một con lắc đơn được treo vào trần một thang máy. Khi thang máy chuyển động thẳng đứng đi lên nhanh dần đều với gia tốc có độ lớn a thì chu kỳ dao động điều hòa của con lắc là 2,52s. Khi thang máy chuyển động thẳng đứng đi lên chậm dần đều với gia tốc cũng có độ lớn a thì chu kỳ dao động điều hòa của con lắc là 3,15s. Khi thang máy đứng yên thì chu kỳ dao động điều hòa của con lắc là
- A 2,78s
- B 2,61s
- C 2,84s
- D 2,96s
Phương pháp giải:
Con lắc đơn chịu thêm tác dụng của lực quán tính
Lời giải chi tiết:
Theo bài ra ta có:
\(\eqalign{
& \left\{ \matrix{
{T_1} = 2\pi \sqrt {{l \over {g + a}}} = 2,52 \hfill \cr
{T_2} = 2\pi \sqrt {{l \over {g - a}}} = 3,15 \hfill \cr} \right. \Rightarrow \left\{ \matrix{
{l \over {g + a}} = {{{{2,52}^2}} \over {4{\pi ^2}}} \hfill \cr
{l \over {g - a}} = {{{{3,15}^2}} \over {4{\pi ^2}}} \hfill \cr} \right. \Rightarrow \left\{ \matrix{
{g \over l} + {a \over l} = {{4{\pi ^2}} \over {{{2,52}^2}}} \hfill \cr
{g \over l} - {a \over l} = {{4{\pi ^2}} \over {{{3,15}^2}}} \hfill \cr} \right. \cr
& \Rightarrow {g \over l} = 2{\pi ^2}\left( {{1 \over {{{2,52}^2}}} + {1 \over {{{3,15}^2}}}} \right) \Rightarrow {l \over g} = {1 \over {2{\pi ^2}\left( {{1 \over {{{2,52}^2}}} + {1 \over {{{3,15}^2}}}} \right)}} \cr} \)
Khi thang máy đứng yên: \(T = 2\pi \sqrt {{\ell \over g}} = 2,78s\)