Câu hỏi
Hàm số \(y={{x}^{3}}+2a{{x}^{2}}+4bx-2018,\,\,(a,\,b\in R)\) đạt cực trị tại \(x=-1\). Khi đó hiệu \(a-b\) là:
- A \(\frac{4}{3}\).
- B -1.
- C \(\frac{3}{4}\).
- D \(-\frac{3}{4}\).
Phương pháp giải:
Hàm số \(y=f(x)\) đạt cực trị tại điểm \(x={{x}_{0}}\) \(\Rightarrow f'({{x}_{0}})=0\).
Lời giải chi tiết:
\(y={{x}^{3}}+2a{{x}^{2}}+4bx-2018,\,\,(a,\,b\in R)\Rightarrow y'=3{{x}^{2}}+4ax+4b\)
Hàm số trên đạt cực trị tại \(x=-1\)\(\Rightarrow 3{{(-1)}^{2}}+4a.(-1)+4b=0\Leftrightarrow 3-4a+4b=0\Leftrightarrow 3-4(a-b)=0\Leftrightarrow a-b=\frac{3}{4}\)
Chọn: C.