Câu hỏi
Một sóng cơ học lan truyền trên một phương truyền sóng với tốc độ v = 50m/s. Sóng truyền từ O đến M, biết phương trình sóng tại điểm M là ${u_M} = 5c{\text{os}}\left( {50\pi t - \pi } \right)$cm. M nằm sau O cách O một đoạn 0,5 cm, thì phương trình sóng tại O là:
- A ${u_O} = 5c{\text{os}}\left( {50\pi t - \frac{{3\pi }}{4}} \right)cm$
- B ${u_O} = 5c{\text{os}}\left( {50\pi t - \frac{\pi }{2}} \right)cm$
- C ${u_O} = 5c{\text{os}}\left( {50\pi t + \pi } \right)cm$
- D ${u_O} = 5c{\text{os}}\left( {50\pi t - \frac{{3\pi }}{2}} \right)cm$
Phương pháp giải:
Phương pháp:Sử dụng lí thuyết về phương trình sóng
Lời giải chi tiết:
Đáp án B
Cách giải:
$\lambda = \frac{v}{f} = \frac{v}{{\frac{\omega }{{2\pi }}}} = \frac{{50}}{{\frac{{50\pi }}{{2\pi }}}} = 2cm$
Phương trình sóng tại O: ${u_O} = 5c{\text{os}}\left( {50\pi t - \pi + \frac{{2\pi OM}}{\lambda }} \right) = 5c{\text{os}}\left( {50\pi t - \pi + \frac{{2\pi 0,5}}{2}} \right) = 5c{\text{os}}\left( {50\pi t - \frac{\pi }{2}} \right)cm$
=> Chọn B