Câu hỏi

Đưa thừa số ra ngoài dấu căn:

\(a)\,\,\,\sqrt {180{x^2}} \\ b)\,\sqrt {3{x^2} - 6xy + 3{y^2}} \)

  • A \(\begin{array}{l}
    a)\,\,6x\sqrt 5 \\
    b)\,\,\,\left\{ \begin{array}{l}
    \left( {x - y} \right)\sqrt 3 \,\,\,\,khi\,\,\,\,x \ge y\\
    \left( {y - x} \right)\sqrt x \,\,\,\,khi\,\,\,x < y
    \end{array} \right..
    \end{array}\)
  • B \(\begin{array}{l}
    a)\,\,\, - 6x\sqrt 5 \\
    b)\,\,\left( {x - y} \right)\sqrt 3
    \end{array}\)
  • C \(\begin{array}{l}
    a)\,\,\left\{ \begin{array}{l}
    6x\sqrt 5 \,\,\,khi\,\,\,x \ge 0\\
    - 6x\sqrt 5 \,\,\,\,khi\,\,\,x < 0
    \end{array} \right.\\
    b)\,\,\,\left\{ \begin{array}{l}
    \left( {x - y} \right)\sqrt 3 \,\,\,khi\,\,\,x \ge 0\\
    \left( {y - x} \right)\sqrt 3 \,\,\,khi\,\,\,x < y
    \end{array} \right..
    \end{array}\)
  • D \(\begin{array}{l}
    a)\,\, - 6x\sqrt 5 \\
    b)\,\, - \left( {x - y} \right)\sqrt 3
    \end{array}\)

Lời giải chi tiết:

\(\begin{array}{l}a)\,\,\,\sqrt {180{x^2}}  = \sqrt {36.5{x^2}}  = 6\left| x \right|\sqrt 5  = \left\{ \begin{array}{l}6x\sqrt 5 \,\,\,\,\,khi\,\,\,x \ge 0\\ - 5x\sqrt 5 \,\,\,\,\,khi\,\,\,x < 0\end{array} \right..\\b)\,\,\,\sqrt {3{x^2} - 6xy + 3{y^2}}  = \sqrt {3\left( {{x^2} - 2xy + {y^2}} \right)}  = \sqrt {3{{\left( {x - y} \right)}^2}} \\ = \sqrt 3 \left| {x - y} \right| = \left\{ \begin{array}{l}\sqrt 3 \left( {x - y} \right)\,\,\,\,\,khi\,\,\,x \ge y\\ - \sqrt 3 \left( {x - y} \right)\,\,\,\,\,khi\,\,\,\,x < y\end{array} \right..\end{array}\)


Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay