Câu hỏi
Rút gọn biểu thức: \(B=\frac{1}{\sqrt{x}+1}-{{\frac{x+2}{x\sqrt{x}+1}}^{{}}}{{^{{}}}^{{}}}\left( x\ge 0 \right)\)
- A \(\frac{{ - 2}}{{x - \sqrt x + 1}}\)
- B \(\frac{{ - 1}}{{x - \sqrt x + 1}}\)
- C \(\frac{{ 1}}{{x - \sqrt x + 1}}\)
- D \(\frac{{ - 3}}{{x - \sqrt x + 1}}\)
Lời giải chi tiết:
\(\begin{array}{l}B = \frac{1}{{\sqrt x + 1}} - \frac{{x + 2}}{{x\sqrt x + 1}} = \frac{1}{{\sqrt x + 1}} - \frac{{x + 2}}{{\left( {\sqrt x + 1} \right)\left( {x - \sqrt x + 1} \right)}}\\ = \frac{{x - \sqrt x + 1 - x - 2}}{{\left( {\sqrt x + 1} \right)\left( {x - \sqrt x + 1} \right)}} = \frac{{ - \sqrt x - 1}}{{\left( {\sqrt x + 1} \right)\left( {x - \sqrt x + 1} \right)}}\\ = \frac{{ - \left( {\sqrt x + 1} \right)}}{{\left( {\sqrt x + 1} \right)\left( {x - \sqrt x + 1} \right)}} = \frac{{ - 1}}{{x - \sqrt x + 1}}\end{array}\)