Câu hỏi
Cho hàm số \(f\left( x \right) = \left\{ \matrix{ {{\sqrt {1 + x} - 1} \over x}\quad \;khi\;\;\,\,\,x > 0 \hfill \cr a + 2x\quad \;\quad \,\,\,\,\,\,khi\;\;\,\,\,x \le 0 \hfill \cr} \right.\)
Với giá trị nào của \(a\) thì hàm số đã cho liên tục tại \(x = 0\)?
- A \({1 \over 2}\)
- B \({-1 \over 2}\)
- C \({3 \over 2}\)
- D \({2 \over 3}\)
Phương pháp giải:
Để hàm số liên tục tại x = 0 thì \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = f\left( 0 \right)\)
Lời giải chi tiết:
\(\eqalign{ & \mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} {{\sqrt {1 + x} - 1} \over x} = \mathop {\lim }\limits_{x \to {0^ + }} {{1 + x - 1} \over {x\left( {\sqrt {1 + x} + 1} \right)}} = \mathop {\lim }\limits_{x \to {0^ + }} {1 \over {\sqrt {1 + x} + 1}} = {1 \over 2} \cr & \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \left( {a + 2x} \right) = a = f\left( 0 \right) \cr} \)
Để hàm số liên tục tại x = 0 thì \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = f\left( 0 \right) \Leftrightarrow a = {1 \over 2}\)
Chọn A.