Câu hỏi

Cho biểu thức \(S = C_n^2 + C_n^3 + C_n^4 + C_n^5... + C_n^{n - 2}\). Khẳng định nào sau đây đúng?

  • A \(S = {2^n} - 2n + 2\) 
  • B \(S = {2^n} - 2\)   
  • C \(S = {2^n} - 2n - 2\) 
  • D \(S = {2^n} + n - 1\)

Phương pháp giải:

+) Xuất phát từ khai triển nhị thức \({\left( {a + b} \right)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + C_n^2{a^{n - 2}}{b^2} + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)

+) Thay \(a,b,n\) bằng các giá trị thích hợp.

Lời giải chi tiết:

Ta có: \({\left( {a + b} \right)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + C_n^2{a^{n - 2}}{b^2} + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)

Thay \(a = 1,b = 1\) ta có:

\(\begin{array}{l}
{2^n} = C_n^0 + C_n^1 + C_n^2 + ... + C_n^{n - 1} + C_n^n\\
\Leftrightarrow {2^n} = 1 + n + C_n^2 + C_n^3 + C_n^4 + C_n^5... + C_n^{n - 2} + n + 1\\
\Leftrightarrow {2^n} - 2n - 2 = C_n^2 + C_n^3 + C_n^4 + C_n^5... + C_n^{n - 2}
\end{array}\)

Chọn C.


Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay