Câu hỏi

Tìm số nguyên n biết rằng \(n + \left( {n + 1} \right) + \left( {n + 2} \right) + ... + 19 + 20 = 20\) , trong đó vế trái là tổng các số nguyên liên tiếp viết theo thứ tự tăng dần.

 

  • A n = 20
  • B n = - 20
  • C n = 19
  • D n = - 19

Phương pháp giải:

Sử dụng công thức tính tổng của dãy số cách đều để tìm n

Tổng = (Số đầu + Số cuối).Số số hạng : 2

Lời giải chi tiết:

Ta có: 

\(\eqalign{& n + \left( {n + 1} \right) + \left( {n + 2} \right) + ... + 19 + 20 = 20  \cr &  \Rightarrow n + \left( {n + 1} \right) + \left( {n + 2} \right) + ... + 19 = 0\,\,\,\,(*) \cr} \)

Gọi m là số các số hạng ở vế trái của (*). Khi đó  \({{\left( {n + 19} \right).m} \over 2} = 0\)

Vì \(m \ne 0\) nên  \(n + 19 = 0 \Rightarrow n = 0 - 19 =  - 19\)

Vậy n = - 19 .


Luyện Bài Tập Trắc nghiệm Toán 6 - Kết nối tri thức - Xem ngay