Câu hỏi

Phương trình tiếp tuyến của đồ thị hàm số \(y={{x}^{3}}-6\text{x}+2\)tại điểm \(M\left( 1;-3 \right)\) là:

  • A  \(y=-3x.\)                               
  • B  \(y=-3x-3.\)                            
  • C

     \(y=3x-3.\)                             

     

  • D \(y=3x.\)

Phương pháp giải:

Phương trình tiếp tuyến của hàm số \(y=f\left( x \right)\) tại điểm \({{x}_{0}}\) là \(y-f\left( {{x}_{0}} \right)=f'\left( x{{}_{0}} \right)\left( x-{{x}_{0}} \right).\)

Lời giải chi tiết:

Ta có \(y'=3{{x}^{2}}-6\Rightarrow y'\left( 1 \right)=-3.\) Do đó phương trình tiếp tuyến có dạng \(y+3=-3\left( x-1 \right)\Leftrightarrow y=-3x.\)

Chọn đáp án A.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay