Câu hỏi
Cho hàm số \(y={{x}^{3}}-m{{x}^{2}}+\left( m-\frac{2}{3} \right)x+5\) đạt cực tiểu tại \(x=1\)thì m bằng:
- A \(m=\frac{3}{7}\)
- B \(m=\frac{7}{3}\)
- C \(m=\frac{2}{5}\)
- D \(m=0\)
Phương pháp giải:
Dùng điều kiện cần và đủ cho cực trị của hàm số.
Lời giải chi tiết:
Ta có \(y'\left( x \right)=3{{x}^{2}}-2mx+\left( m-\frac{2}{3} \right),\,\,y''\left( x \right)=6x-2m.\) Để \(y\) đạt cực tiểu tại \(x=1\) thì điều kiện cần và đủ là
\(\left\{ \begin{array}{l}y'\left( 1 \right) = 0\\y\left( 1 \right) > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{3.1^2} - 2m.1 + \left( {m - \frac{2}{3}} \right) = 0\\6.1 - 2m > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - m + \frac{7}{3} = 0\\3 > m\end{array} \right. \Leftrightarrow m = \frac{7}{3}.\)
Chọn đáp án B.