Câu hỏi
Cho \(S=1+x+{{x}^{2}}+{{x}^{3}}+{{x}^{4}}+{{x}^{5}}\), chứng minh rằng: \(xS-S={{x}^{6}}-1\)
Phương pháp giải:
Phương pháp:
- Biến đổi vế trái biểu thức cần chứng minh để biểu thức vế trái bằng biểu thức vế phải.
Lời giải chi tiết:
Cách giải:
\(\begin{array}{l}xS = x.(1 + x + {x^2} + {x^3} + {x^4} + {x^5}) = x + {x^2} + {x^3} + {x^4} + {x^5} + {x^6}.\\\Rightarrow xS - S = x + {x^2} + {x^3} + {x^4} + {x^5} + {x^6} - 1 - x - {x^2} - {x^3} - {x^4} - {x^5} = {x^6} - 1\;(dpcm).\end{array}\)