Câu hỏi

 Tìm số hạng không chứa x trong khai triển \({{\left( x-\frac{1}{x} \right)}^{n}}\) biết \(C_{n}^{2}C_{n}^{n-2}+2C_{n}^{2}C_{n}^{3}+C_{n}^{3}C_{n}^{n-3}=100\)

 

 

 

  • A  9                                            

     

  • B 8                                            
  • C  6                                            

     

  • D Đáp số khác

Phương pháp giải:

- Sử dụng các công thức: \(\left\{ \begin{array}{l}C_n^k = C_n^{n - k}\\C_n^k = \frac{{n!}}{{k!\left( {n - k} \right)!}}\,\,\left( {0 \le k \le n} \right)\end{array} \right.\)  để tìm n.

- Sử dụng công thức khai triển nhị thức Newton: \({{\left( a+b \right)}^{n}}=\sum\limits_{k=0}^{n}{C_{n}^{k}{{a}^{k}}{{b}^{n-k}}}\). Tìm số hạng không chứa x ta cho số mũ của x bằng 0 \(\left( {{x}^{0}}=1 \right)\).

Lời giải chi tiết:

\(\begin{array}{l}C_n^2C_n^{n - 2} + 2C_n^2C_n^3 + C_n^3C_n^{n - 3} = 100\,\left( {n \ge 3} \right)\\ \Leftrightarrow {\left( {C_n^2} \right)^2} + 2C_n^2C_n^3 + {\left( {C_n^3} \right)^2} = 100\\ \Leftrightarrow {\left( {C_n^2 + C_n^3} \right)^2} = 100\\ \Leftrightarrow C_n^2 + C_n^3 = 10.\\ \Leftrightarrow \frac{{n!}}{{2!\left( {n - 2} \right)!}} + \frac{{n!}}{{3!\left( {n - 3} \right)!}} = 10\\ \Leftrightarrow \frac{1}{2}n\left( {n - 1} \right) + \frac{1}{6}n\left( {n - 1} \right)\left( {n - 2} \right) = 10\\ \Leftrightarrow 3{n^2} - 3n + {n^3} - 3{n^2} + 2n = 60\\ \Leftrightarrow {n^3} - n - 60 = 0\\ \Leftrightarrow n = 4\,\,\left( {tm} \right).\end{array}\)

Thay n = 4 ta có \({{\left( x-\frac{1}{x} \right)}^{4}}=\sum\limits_{k=0}^{4}{C_{4}^{k}{{x}^{4-k}}{{\left( -1 \right)}^{k}}{{x}^{-k}}}=\sum\limits_{k=0}^{4}{C_{4}^{k}{{\left( -1 \right)}^{k}}{{x}^{4-2k}}}\)

Tìm số hạng không chứa x \(\Leftrightarrow 4-2k=0\Leftrightarrow k=2\).

Vậy số hạng không chứa x là \(C_{4}^{2}{{\left( -1 \right)}^{2}}=6.\)

Chọn C.


Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay