Câu hỏi
Tìm hệ số của số hạng chứa \({{x}^{4}}\) trong khai triển \({{\left( \frac{x}{3}-\frac{3}{x} \right)}^{12}}\) (với \(x\ne 0\) )?
- A \(\frac{55}{9}.\)
- B 40095.
- C \(\frac{1}{81}.\)
- D 924.
Phương pháp giải:
Công thức khai triển nhị thức New-ton: \({{\left( a+b \right)}^{n}}=\sum\limits_{k=0}^{n}{C_{n}^{k}{{a}^{k}}{{b}^{n-k}}}\).
Lời giải chi tiết:
Ta có: \({{\left( \frac{x}{3}-\frac{3}{x} \right)}^{12}}=\sum\limits_{k=0}^{12}{C_{12}^{k}{{\left( \frac{x}{3} \right)}^{k}}{{\left( -\frac{3}{x} \right)}^{12-k}}}={{\sum\limits_{k=0}^{12}{C_{12}^{k}{{\left( \frac{1}{3} \right)}^{k}}{{x}^{k}}{{\left( -3 \right)}^{12-k}}\left( \frac{1}{x} \right)}}^{12-k}}\)
Số hạng chứa \({{x}^{4}}\) nên ta tìm \(k\) sao cho \({{x}^{k}}:{{x}^{12-k}}={{x}^{4}}\Leftrightarrow {{x}^{2k-12}}={{x}^{4}}\Leftrightarrow 2k-12=4\Leftrightarrow k=8\).
Vậy hệ số của số hạng chứa \({{x}^{4}}\) là: \(C_{12}^{8}.{{\left( \frac{1}{3} \right)}^{8}}.{{\left( -3 \right)}^{12-8}}=\frac{C_{12}^{8}}{{{3}^{4}}}=\frac{55}{9}\)
Chọn A.