Câu hỏi
Biết đồ thị hàm số \(\left( P \right):\,\,y = {x^2} - \left( {{m^2} + 1} \right)x - 1\) cắt trục hoành tại hai điểm phân biệt có hoành độ \({x_1},{x_2}\) . Tìm giá trị của tham số m để biểu thức \(T = {x_1} + {x_2}\) đạt giá trị nhỏ nhất.
- A \(m > 0\)
- B \(m < 0\)
- C \(m = 0\)
- D Không xác định được
Lời giải chi tiết:
Hướng dẫn giải chi tiết
Dễ thấy rằng hai giao điểm có cùng tung độ và có hoành độ đối xứng với nhau qua trục đối xứng \(x = {{{m^2} + 1} \over 2}\)
Từ đây suy ra \(T = {x_1} + {x_2} = 2{{{m^2} + 1} \over 2} = {m^2} + 1 \ge 1\,\,\forall m\)
Suy ra \({T_{\min }} = {\left( {{x_1} + {x_2}} \right)_{\min }} = 1\) và đạt được khi \(m = 0\).
Chọn C.