Câu hỏi
Cho tích phân \(I = \int_0^{\sqrt 3 } {\dfrac{{{x^3}}}{{x + \sqrt {{x^2} + 1} }}} dx = \dfrac{{a + b\sqrt c }}{{15}}\), Khi đó a \( + b - {c^2}\) bằng
- A 76
- B 22
- C 40
- D 58
Phương pháp giải:
Tách \({x^3} = {x^3}.\left[ {{{\left( {\sqrt {{x^2} + 1} } \right)}^2} - {x^2}} \right]\).
Khử mẫu.
Lời giải chi tiết:
\(\begin{array}{l}I = \int\limits_0^{\sqrt 3 } {\dfrac{{{x^3}}}{{x + \sqrt {{x^2} + 1} }}dx} \\ = \int\limits_0^{\sqrt 3 } {\dfrac{{{x^3}.\left[ {{{\left( {\sqrt {{x^2} + 1} } \right)}^2} - {x^2}} \right]}}{{x + \sqrt {{x^2} + 1} }}dx} \\ = \int\limits_0^{\sqrt 3 } {{x^3}.\left( {\sqrt {{x^2} + 1} - x} \right)dx} \\ = \int\limits_0^{\sqrt 3 } {{x^3}.\sqrt {{x^2} + 1} dx} - \int\limits_0^{\sqrt 3 } {{x^4}dx} \\ = \dfrac{{58}}{{15}} - \dfrac{{9\sqrt 3 }}{5} = \dfrac{{58 - 27\sqrt 3 }}{5}\\ \Rightarrow a = 58,b = - 27,c = 3\\ \Rightarrow a + b - {c^2} = 22\end{array}\)