Câu hỏi

Cho số phức \(z\) thỏa mãn điều kiện \(i.z = 1 + 2i\). Phần thực của số phức \(z\) bằng

  • A \(1\).
  • B \( - 1\).
  • C \(2\).
  • D \( - 2\).

Phương pháp giải:

Sử dụng tính chất \(z.{z_1} = {z_2} \Leftrightarrow z = \frac{{{z_2}}}{{{z_1}}}\) và \(\frac{1}{z} = \frac{{\overline z }}{{{{\left| z \right|}^2}}}\).

Phần thực của số phức \(z = a + bi\) là a.

Lời giải chi tiết:

\(\begin{array}{l}i.z = 1 + 2i\\ \Leftrightarrow z = \frac{{1 + 2i}}{1}\\ \Leftrightarrow z = \frac{{\left( {1 + 2i} \right)\left( { - i} \right)}}{1}\\ \Leftrightarrow z = 2 - i\end{array}\)

=> Phần thực là 2.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay