Câu hỏi
Biết \(\int\limits_0^3 {f\left( x \right)dx} = \frac{5}{3}\) và \(\int\limits_0^4 {f\left( t \right)dt} = \frac{3}{5}\). Tính \(\int\limits_3^4 {f\left( u \right)du} \).
- A \( - \frac{{17}}{{15}}\)
- B \( - \frac{{16}}{{15}}\)
- C \(\frac{8}{{15}}\)
- D \(\frac{{14}}{{15}}\)
Phương pháp giải:
\(\int\limits_a^b {f\left( u \right)du} = \int\limits_a^b {f\left( t \right)dt} = \int\limits_a^b {f\left( x \right)dx} \).
\(\int\limits_a^b {f\left( x \right)dx} = \int\limits_0^b {f\left( x \right)dx} - \int\limits_0^a {f\left( x \right)dx} \).
Lời giải chi tiết:
\(\begin{array}{l}\int\limits_0^3 {f\left( u \right)du} = \frac{5}{3};\int\limits_0^4 {f\left( u \right)du} = \frac{3}{5}\\ \Rightarrow \int\limits_3^4 {f\left( u \right)du} = \int\limits_0^4 {f\left( u \right)du} - \int\limits_0^3 {f\left( u \right)du} \\ = \frac{3}{5} - \frac{5}{3} = - \frac{{16}}{{15}}\end{array}\)