Câu hỏi
Gọi \(\left( H \right)\) là hình phẳng giới hạn bởi các đồ thị \(y = {x^2} - 2x,y = 0\) trong mặt phẳng \(Oxy\). Quay hình \(\left( H \right)\) quanh trục hoành ta được một khối tròn xoay có thể tích bằng
- A \(\int\limits_0^2 {\left| {{x^2} - 2x} \right|dx} \).
- B \(\pi \int\limits_0^2 {\left| {{x^2} - 2x} \right|dx} \).
- C \(\pi \int\limits_0^2 {{{\left( {{x^2} - 2x} \right)}^2}dx} \).
- D \(\int\limits_0^2 {{{\left( {{x^2} - 2x} \right)}^2}dx} \).
Phương pháp giải:
Cho hai hàm số \(y{\rm{ }} = {\rm{ }}f\left( x \right)\)và \(y{\rm{ }} = {\rm{ }}g\left( x \right)\)liên tục trên [a; b]. Khi đó thể tích vật thể tròn xoay giới hạn bởi hai đồ thị số \(y{\rm{ }} = {\rm{ }}f\left( x \right)\), \(y{\rm{ }} = {\rm{ }}g\left( x \right)\)và hai đường thẳng \(x{\rm{ }} = {\rm{ }}a;{\rm{ }}y{\rm{ }} = {\rm{ }}b\)khi quay quanh trục Ox là:
\(V = \pi \int_a^b {\left| {{f^2}(x) - {g^2}(x)} \right|dx} \)
Lời giải chi tiết:
Giải phương trình hoành độ giao điểm: \({x^2} - 2x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\).
Quay hình \(\left( H \right)\) quanh trục hoành ta được một khối tròn xoay có thể tích bằng \(V = \pi \int\limits_0^2 {{{\left( {{x^2} - 2x} \right)}^2}dx} \)
Chọn C.