Câu hỏi

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng xét dấu đạo hàm như hình vẽ:

Đồ thị hàm số \(y = f\left( x \right)\) có tất cả bao nhiêu điểm cực trị?

  • A \(4\)
  • B \(3\)
  • C \(2\)
  • D \(1\)

Phương pháp giải:

Ta có: \(x = {x_0}\) là điểm cực trị của hàm số \(y = f\left( x \right) \Leftrightarrow \) tại điểm \(x = {x_0}\) thì hàm số có \(y'\)  đổi dấu từ dương sang âm hoặc ngược lại.

Lời giải chi tiết:

Dựa vào bảng xét dấu của hàm số \(y = f\left( x \right)\) ta thấy \(f'\left( x \right)\) đổi dấu qua \(x =  - 1,\,\,x = 0,\,\,x = 2\) và \(x = 4\)

\( \Rightarrow 4\) điểm này là \(4\) điểm cực trị của hàm số \(y = f\left( x \right).\)

Vậy hàm số \(y = f\left( x \right)\) có \(4\) điểm cực trị.

Chọn A.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay