Câu hỏi

Cho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị như hình bên. Hỏi phương trình \(\left| {f\left( x \right)} \right| = 1\) có bao nhiêu nghiệm?

  • A \(3\)
  • B \(7\)
  • C \(6\)
  • D \(4\)

Phương pháp giải:

- Giải phương trình trị tuyệt đối: \(\left| x \right| = a \Leftrightarrow x =  \pm a\).

- Sử dụng tương giao đồ thị hàm số: Số nghiệm của phương trình \(f\left( x \right) = m\) là số giao điểm của đồ thị hàm số \(y = f\left( x \right)\) và đường thẳng \(y = m\).

Lời giải chi tiết:

Ta có: \(\left| {f\left( x \right)} \right| = 1 \Leftrightarrow \left[ \begin{array}{l}f\left( x \right) = 1\,\,\,\,\,\left( 1 \right)\\f\left( x \right) =  - 1\,\,\left( 2 \right)\end{array} \right.\).

+ Số nghiệm của phương trình (1) là số giao điểm của đồ thị hàm số \(y = f\left( x \right)\) và đường thẳng \(y = 1\), suy ra phương trình (1) có 3 nghiệm phân biệt.

+ Số nghiệm của phương trình (2) là số giao điểm của đồ thị hàm số \(y = f\left( x \right)\) và đường thẳng \(y =  - 1\), suy ra phương trình (2) có 4 nghiệm phân biệt.

Dễ thấy các nghiệm trên không có nghiệm nào trùng nhau.

Vậy phương trình đã cho có 7 nghiệm phân biệt.

Chọn B.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay