Câu hỏi
Tập hợp tất cả các điểm biểu diễn các số phức \(z\) thỏa mãn \(\left| {z - 2} \right| = \left| {\overline z + i} \right|\) là đường thẳng:
- A \(4x + 2y - 3 = 0\)
- B \(4x + 2y + 3 = 0\)
- C \(4x - 2y - 3 = 0\)
- D \(4x - 2y + 3 = 0\)
Phương pháp giải:
Gọi số phức \(z = x + yi\,\,\left( {x,\,\,y \in \mathbb{R}} \right)\)\( \Rightarrow \overline z = x - yi.\)
Modul của số phức \(z\) là:\(\left| z \right| = \sqrt {{x^2} + {y^2}} .\)
Điểm \(M\left( {x;\,\,y} \right)\) là điểm biểu diễn số phức \(z.\)
Lời giải chi tiết:
Gọi số phức \(z = x + yi\,\,\left( {x,\,\,y \in \mathbb{R}} \right)\)\( \Rightarrow \overline z = x - yi.\) Ta có:
\(\begin{array}{l}\left| {z - 2} \right| = \left| {\overline z + i} \right|\\ \Leftrightarrow \left| {x + yi - 2} \right| = \left| {x - yi + i} \right|\\ \Leftrightarrow \sqrt {{{\left( {x - 2} \right)}^2} + {y^2}} = \sqrt {{x^2} + {{\left( {y - 1} \right)}^2}} \\ \Leftrightarrow {\left( {x - 2} \right)^2} + {y^2} = {x^2} + {\left( {y - 1} \right)^2}\\ \Leftrightarrow 4 - 4x = 1 - 2y\\ \Leftrightarrow 4x - 2y - 3 = 0\end{array}\)
\( \Rightarrow \) Tập hợp điểm biểu diễn số phức \(z\) đã cho là đường thẳng có phương trình \(4x - 2y - 3 = 0.\)
Chọn C.