Câu hỏi

Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\backslash \left\{ 0 \right\}\), liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:

Tìm tất cả các giá trị thực của tham số m để phương trình \(f\left( x \right) = m\) có ba nghiệm thực phân biệt.

  • A \(m \in \left( {1;3} \right)\)
  • B \(m \in \left( {1;3} \right]\)
  • C \(m \in \left[ {1;3} \right]\)
  • D \(m \in \left[ {1;3} \right)\)

Phương pháp giải:

Số nghiệm của phương trình \(f\left( x \right) = m\) là số giao điểm của đồ thị hàm số \(y = f\left( x \right)\) và đường thẳng \(y = m\).

Lời giải chi tiết:

Số nghiệm của phương trình \(f\left( x \right) = m\) là số giao điểm của đồ thị hàm số \(y = f\left( x \right)\) và đường thẳng \(y = m\).

Dựa vào BBT, phương trình \(f\left( x \right) = m\) có 3 nghiệm thực phân biệt khi \(m \in \left( {1;3} \right)\).

Chọn A.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay