Câu hỏi
Kết quả của giới hạn \(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + x} - \sqrt[3]{{{x^3} - {x^2}}}} \right)\) là:
- A \( + \infty \).
- B \( - \infty \).
- C \(0\).
- D \(\dfrac{5}{6}\).
Phương pháp giải:
Thêm bớt x, nhân liên hợp.
Lời giải chi tiết:
Ta có:
\(\begin{array}{l}\,\,\,\,\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + x} - \sqrt[3]{{{x^3} - {x^2}}}} \right)\\ = \mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + x} - x + x - \sqrt[3]{{{x^3} - {x^2}}}} \right)\\ = \mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + x} - x} \right) + \mathop {\lim }\limits_{x \to + \infty } \left( {x - \sqrt[3]{{{x^3} - {x^2}}}} \right)\\ = \mathop {\lim }\limits_{x \to + \infty } \dfrac{{{x^2} + x - {x^2}}}{{\sqrt {{x^2} + x} + x}} + \mathop {\lim }\limits_{x \to + \infty } \dfrac{{{x^3} - {x^3} + {x^2}}}{{{x^2} + x\sqrt[3]{{{x^3} - {x^2}}} + {{\sqrt[3]{{{x^3} - {x^2}}}}^2}}}\\ = \mathop {\lim }\limits_{x \to + \infty } \dfrac{x}{{\sqrt {{x^2} + x} + x}} + \mathop {\lim }\limits_{x \to + \infty } \dfrac{{{x^2}}}{{{x^2} + x\sqrt[3]{{{x^3} - {x^2}}} + {{\sqrt[3]{{{x^3} - {x^2}}}}^2}}}\\ = \mathop {\lim }\limits_{x \to + \infty } \dfrac{1}{{\sqrt {1 + \dfrac{1}{x}} + 1}} + \mathop {\lim }\limits_{x \to + \infty } \dfrac{1}{{1 + \sqrt[3]{{1 - \dfrac{1}{x}}} + {{\sqrt[3]{{1 - \dfrac{1}{x}}}}^2}}}\\ = \dfrac{1}{{1 + 1}} + \dfrac{1}{{1 + 1 + 1}} = \dfrac{5}{6}.\end{array}\)
Chọn D.