Câu hỏi
Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:
Số nghiệm thực của phương trình \(f\left( x \right) + 1 = 0\) là:
- A \(3\)
- B \(0\)
- C \(1\)
- D \(2\)
Phương pháp giải:
Số nghiệm của phương trình \(f\left( x \right) = m\) là số giao điểm của đồ thị hàm số \(y = f\left( x \right)\) và đường thẳng \(y = m\).
Lời giải chi tiết:
Ta có: \(f\left( x \right) + 1 = 0 \Leftrightarrow f\left( x \right) = - 1\). Khi đó số nghiệm của phương trình là số giao điểm của đồ thị hàm số \(y = f\left( x \right)\) và đường thẳng \(y = - 1\).
Dựa vào BBT ta thấy đường thẳng \(y = - 1\) cắt đồ thị hàm số tại 2 điểm phân biệt. Vậy phương trình \(f\left( x \right) + 1 = 0\) có 2 nghiệm phân biệt.
Chọn D.