Câu hỏi

Khai triển nhị thức \({\left( {x + 2} \right)^{n + 5}}\,\,\left( {n \in \mathbb{N}} \right)\) có tất cả \(2019\) số hạng. Tìm \(n\).

  • A \(2018\)
  • B \(2014\)
  • C \(2013\)
  • D \(2015\)

Phương pháp giải:

Khai triển nhị thức \({\left( {a + b} \right)^n}\,\,\left( {n \in \mathbb{N}} \right)\) có tất cả \(n + 1\) số hạng.

Lời giải chi tiết:

Khai triển nhị thức \({\left( {x + 2} \right)^{n + 5}}\,\,\left( {n \in \mathbb{N}} \right)\) có tất cả \(2019\) số hạng nên \(n + 5 = 2019 + 1 \Leftrightarrow n = 2015\).

Chọn D.


Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay