Câu hỏi

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:

Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là:

  • A \(4\)
  • B \(3\)
  • C \(1\)
  • D \(2\)

Phương pháp giải:

- Đồ thị hàm số \(y = f\left( x \right)\) nhận đường thẳng \(x = a\) là tiệm cận đứng khi xảy ra một trong các giới hạn \(\mathop {\lim }\limits_{x \to {a^ \pm }} f\left( x \right) =  \pm \infty \). 

- Đồ thị hàm số \(y = f\left( x \right)\) nhận đường thẳng \(y = b\) là tiệm cận ngang khi xảy ra một trong các giới hạn \(\mathop {\lim }\limits_{x \to  \pm \infty } f\left( x \right) = b\).

Lời giải chi tiết:

Từ BBT của hàm số đã cho ta có:

+) \(\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) = 2;\,\,\,\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = 6\) nên đồ thị hàm số đã cho có 2 đường tiệm cận ngang là \(y = 2;\,\,y = 6\).

+) \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) =  + \infty \) nên đồ thị hàm số \(y = f\left( x \right)\) có 1 đường tiệm cận đứng là \(x = 1\).

Vậy đồ thị hàm số \(y = f\left( x \right)\) có tất cả 3 đường tiệm cận.

Chọn B.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay