Câu hỏi
Cho tam thức bậc hai \(f\left( x \right) = a{x^2} + bx + c\,\,\,\left( {a \ne 0} \right).\) Điều kiện cần và đủ để \(f\left( x \right) < 0\,\,\forall \,x \in \mathbb{R}\) là:
- A \(\left\{ \begin{array}{l}a > 0\\\Delta \ge 0\end{array} \right.\)
- B \(\left\{ \begin{array}{l}a < 0\\\Delta \le 0\end{array} \right.\)
- C \(\left\{ \begin{array}{l}a < 0\\\Delta > 0\end{array} \right.\)
- D \(\left\{ \begin{array}{l}a < 0\\\Delta < 0\end{array} \right.\)
Phương pháp giải:
Cho tam thức bậc hai:\(f\left( x \right) = a{x^2} + bx + c\,\,\,\left( {a \ne 0} \right).\) Khi đó \(f\left( x \right) < 0\,\,\forall x \in \mathbb{R} \Leftrightarrow \left\{ \begin{array}{l}a > 0\\\Delta < 0\end{array} \right..\)
Lời giải chi tiết:
Cho tam thức bậc hai:\(f\left( x \right) = a{x^2} + bx + c\,\,\,\left( {a \ne 0} \right).\) Khi đó \(f\left( x \right) > 0\,\,\forall x \in \mathbb{R} \Leftrightarrow \left\{ \begin{array}{l}a > 0\\\Delta < 0\end{array} \right..\)
Chọn D.