Môn Toán - Lớp 12
30 bài tập trắc nghiệm đường tiệm cận của đồ thị hàm số mức độ vận dụng, vận dụng cao
Câu hỏi
Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số \(y = \dfrac{{x\sqrt {2 - {x^2}} }}{{{x^2} + x - 2}}\) là
- A \(1\)
- B \(2\)
- C \(4\)
- D \(3\)
Phương pháp giải:
- Tìm TXĐ của hàm số.
- Sử dụng định nghĩa các đường tiệm cận: Cho hàm số \(y = f\left( x \right)\).
+ Đường thẳng \(y = {y_0}\) là TCN của đồ thị hàm số nếu thỏa mãn một trong các điều kiện sau: \(\mathop {\lim }\limits_{x \to + \infty } y = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } y = {y_0}\).
+ Đường thẳng \(x = {x_0}\) là TCĐ của đồ thị hàm số nếu thỏa mãn một trong các điều kiện sau: \(\mathop {\lim }\limits_{x \to x_0^ + } y = + \infty \), \(\mathop {\lim }\limits_{x \to x_0^ + } y = - \infty \) , \(\mathop {\lim }\limits_{x \to x_0^ - } y = + \infty \) hoặc \(\mathop {\lim }\limits_{x \to x_0^ - } y = - \infty \).
Lời giải chi tiết:
ĐKXĐ: \(\left\{ \begin{array}{l}2 - {x^2} \ge 0\\{x^2} + x - 2 \ne 0\end{array} \right. \Leftrightarrow x \in \left[ { - \sqrt 2 ;\sqrt 2 } \right]\backslash \left\{ 1 \right\}\).
Do đó hàm số không có tiệm cận ngang (do không thể tồn tại giới hạn khi x tiến ra vô cực).
Ta xét \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} \dfrac{{x\sqrt {2 - {x^2}} }}{{{x^2} + x - 2}} = + \infty \\\mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{x\sqrt {2 - {x^2}} }}{{{x^2} + x - 2}} = - \infty \end{array} \right.\).
(Ta không xét giới hạn của hàm số khi \(x \to {2^ + }\) và \(x \to {2^ - }\) do \(x = 2\) không thuộc TXĐ của hàm số).
Do đó \(x = 1\) là TCĐ của đồ thị hàm số.
Vậy đồ thị hàm số có 1 tiệm cận đứng.
Chọn A.