Câu hỏi

Đặt vào hai đầu cuộn thuần cảm với độ tự cảm \(L = \frac{1}{\pi }H\) một hiệu điện thế xoay chiều \(u = {U_0}.\cos 100\pi t\left( V \right).\)Tại thời điểm t1có \({u_1} = 200V,{i_1}\; = 2A\); tại thời điểm t2có  \({u_2} = 200\sqrt 2 V,{i_2} = 0\). Biểu thức của hiệu điện thế và dòng điện trong mạch là

  • A \(u = 200\sqrt 2 .\cos 100\pi t(V);i = 2\sqrt 2 \cos \left( {100\pi t - \frac{\pi }{2}} \right)\left( A \right)\)
  • B \(u = 200\sqrt 2 .\cos 100\pi t(V);i = 2\cos \left( {100\pi t} \right)\left( A \right)\)
  • C \(u = 200\sqrt 2 .\cos 100t(V);i = 2\sqrt 2 \cos \left( {100t} \right)\left( A \right)\)
  • D \(u = 200.\cos 100\pi t(V);i = 2\cos \left( {100\pi t} \right)\left( A \right)\)

Phương pháp giải:

Đoạn mạch xoay chiều chỉ chứa cuộn cảm thuần thì:

+ Điện áp và cường độ dòng điện vuông pha với nhau. Ta có:  

\(\frac{{{u^2}}}{{U_0^2}} + \frac{{{i^2}}}{{I_0^2}} = 1\)

+ Cường độ dòng điện trễ pha \(\frac{\pi }{2}\) so với điện áp.

Lời giải chi tiết:

Đoạn mạch xoay chiều chỉ chứa cuộn cảm thuần thì điện áp và cường độ dòng điện vuông pha với nhau.

Ta có:

\(\begin{array}{l}
\frac{{{u^2}}}{{U_0^2}} + \frac{{{i^2}}}{{I_0^2}} = 1 \Rightarrow \frac{{{{200}^2}}}{{U_0^2}} + \frac{2}{{I_0^2}} = \frac{{{{\left( {200\sqrt 2 } \right)}^2}}}{{U_0^2}} + \frac{0}{{I_0^2}} = 1\\
\left\{ \begin{array}{l}
{U_0} = 200\sqrt 2 V\\
{I_0} = 2\sqrt 2 A
\end{array} \right. \Rightarrow u = 200\sqrt 2 .\cos \left( {100\pi t} \right)V\\
\Rightarrow i = 2\sqrt 2 .\cos \left( {100\pi t - \frac{\pi }{2}} \right)A
\end{array}\) 

Chọn A.


Luyện Bài Tập Trắc nghiệm Lí lớp 12 - Xem ngay