Câu hỏi

Đồ thị hàm số \(y = \dfrac{x}{{\sqrt {{x^2} - 1} }}\) có bao nhiêu đường tiệm cận

  • A \(4\).
  • B \(3\).
  • C \(1\).
  • D \(2\).

Phương pháp giải:

- Tìm TXĐ của hàm số.

- Dựa vào định nghĩa để xác định các đường tiệm cận của đồ thị hàm số \(y = f\left( x \right)\).

    + Đường thẳng \(y = {y_0}\) là đường tiệm cận ngang của đồ thị hàm số nếu thỏa mãn một trong các điều kiện sau: \(\mathop {\lim }\limits_{x \to  + \infty } y = {y_0}\), \(\mathop {\lim }\limits_{x \to  - \infty } y = {y_0}\).

    + Đường thẳng \(x = {x_0}\) là đường tiệm cận đứng của đồ thị hàm số nếu thỏa mãn một trong các điều kiện sau: \(\mathop {\lim }\limits_{x \to x_0^ + } y =  + \infty \), \(\mathop {\lim }\limits_{x \to x_0^ + } y =  - \infty \), \(\mathop {\lim }\limits_{x \to x_0^ - } y =  + \infty \), \(\mathop {\lim }\limits_{x \to x_0^ - } y =  - \infty \).

Lời giải chi tiết:

TXĐ: \(D = \left( { - \infty ; - 1} \right) \cup \left( {1; + \infty } \right)\).

Ta có

\(\mathop {\lim }\limits_{x \to  + \infty } \dfrac{x}{{\sqrt {{x^2} - 1} }} = 1 \Rightarrow y = 1\) là tiệm cận  ngang của đồ thị hàm số.

\(\mathop {\lim }\limits_{x \to  - \infty } \dfrac{x}{{\sqrt {{x^2} - 1} }} =  - 1 \Rightarrow y =  - 1\) là tiệm cận ngang của đồ thị hàm số.

\(\mathop {\lim }\limits_{x \to \left( { - 1} \right)} \dfrac{x}{{\sqrt {{x^2} - 1} }} = \infty  \Rightarrow x =  - 1\) là tiệm cận đứng của đồ thị hàm số.

\(\mathop {\lim }\limits_{x \to 1} \dfrac{x}{{\sqrt {{x^2} - 1} }} = \infty  \Rightarrow x = 1\) là tiệm cận đứng của đồ thị hàm số.

Vậy đồ thị hàm số có tất cả 4 đường tiệm cận.

Chọn A.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay