Câu hỏi
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{\sqrt[3]{{2x + 1}} - 1}}{x}\,\,\,\,khi\,\,x \ne 0\\m\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 0\end{array} \right.\). Hàm số \(y = f\left( x \right)\) liên tục tại \(x = 0\) khi:
- A \(m = \dfrac{3}{2}\)
- B \(m = - \dfrac{2}{3}\)
- C \(m = \dfrac{2}{3}\)
- D \(m = - \dfrac{3}{2}\)
Phương pháp giải:
Hàm số \(y = f\left( x \right)\) liên tục tại \(x = 0\) khi \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = f\left( 0 \right).\)
Lời giải chi tiết:
Ta có
\(\begin{array}{l}\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt[3]{{2x + 1}} - 1}}{x}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {2x + 1} \right) - 1}}{{x\left( {\sqrt[3]{{{{\left( {2x + 1} \right)}^2}}} + \sqrt[3]{{2x + 1}} + 1} \right)}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop {\lim }\limits_{x \to 0} \dfrac{2}{{\left( {\sqrt[3]{{{{\left( {2x + 1} \right)}^2}}} + \sqrt[3]{{2x + 1}} + 1} \right)}} = \dfrac{2}{3}\\f\left( 0 \right) = m\end{array}\)
Để hàm số liên tục tại \(x = 0\) khi \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = f\left( 0 \right) \Leftrightarrow m = \dfrac{2}{3}.\)
Chọn C.