Môn Toán - Lớp 12
30 bài tập trắc nghiệm đường tiệm cận của đồ thị hàm số mức độ vận dụng, vận dụng cao
Câu hỏi
Cho hàm số \(f(x) = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ bên.
Hỏi đồ thị hàm số \(g(x) = \dfrac{{({x^2} - 3x + 2)\sqrt {x - 1} }}{{x\left[ {{f^2}(x) - f(x)} \right]}}\) có bao nhiêu tiệm cận đứng?
- A \(4\)
- B \(3\)
- C \(5\)
- D \(2\)
Phương pháp giải:
- Xác định số nghiệm của phương trình mẫu số.
- Số đường tiệm cận đứng của đồ thị hàm số là số nghiệm của phương trình mẫu số thỏa mãn điều kiện xác định và không bị triệt tiêu hết bởi nghiệm của tử số.
Lời giải chi tiết:
ĐKXĐ: \(x \ge 1,\,\,f\left( x \right) \ne 0,\,\,f\left( x \right) \ne 1\).
\(g(x) = \dfrac{{\left( {{x^2} - 3x + 2} \right)\sqrt {x - 1} }}{{x\left[ {{f^2}\left( x \right) - f\left( x \right)} \right]}} = \dfrac{{\left( {x - 2} \right)\left( {x - 1} \right)\sqrt {x - 1} }}{{x.f\left( x \right)\left( {f\left( x \right) - 1} \right)}}\)
Nhận xét: \(f\left( x \right) = a{x^3} + b{x^2} + cx + d\) là hàm số bậc ba, đồng thời, quan sát đồ thị ta thấy:
+) \(f\left( x \right) = 0\) có 2 nghiệm phân biệt \(x = {x_1}\,\,\left( {0 < {x_1} < 1} \right)\,\,\left( {ktm} \right)\)(nghiệm đơn) và \(x = 2\)(nghiệm kép).
+) \(f\left( x \right) = 1\) có 3 nghiệm phân biệt \(x = 1\) (nghiệm đơn), \(x = {x_2}\,\,\left( {1 < {x_2} < 2} \right)\) (nghiệm đơn) và \(x = {x_3}\,\,\left( {{x_3} > 2} \right)\) (nghiệm đơn).
Khi đó hàm số \(y = g\left( x \right)\) được viết dưới dạng : \(g\left( x \right) = \dfrac{{\left( {x - 2} \right)\left( {x - 1} \right)\sqrt {x - 1} }}{{x.\,a\left( {x - {x_1}} \right){{\left( {x - 2} \right)}^2}.\,a\left( {x - 1} \right)\left( {x - {x_2}} \right)\left( {x - {x_3}} \right)}}\)
Do đó, đồ thị hàm số \(g\left( x \right)\) có 3 đường tiệm cận đứng là: \(x = {x_2},\,\,x = 2,\,\,x = {x_3}.\)
Chọn: B.