Câu hỏi
Rút gọn biểu thức: \( P = \left( {{{3x + \sqrt {9x} - 3} \over {x + \sqrt x - 2}} + {1 \over {\sqrt x - 1}} + {1 \over {\sqrt x + 2}}} \right):{1 \over {x - 1}} \) với \(x \geq 0; \, x \neq 1. \)
- A \(P= (3\sqrt{x}+1)(\sqrt{x}+1) \)
- B \(P= (3\sqrt{x}-1)(\sqrt{x}-1) \)
- C \(P= (3\sqrt{x}-1)(\sqrt{x}+1) \)
- D \(P= (3\sqrt{x}+1)(\sqrt{x}-1) \)
Lời giải chi tiết:
\( \eqalign{& P = \left( {{{3x + \sqrt {9x} - 3} \over {x + \sqrt x - 2}} + {1 \over {\sqrt x - 1}} + {1 \over {\sqrt x + 2}}} \right):{1 \over {x - 1}} \cr & \,\,\,\, = \left( {{{3x + 3\sqrt x - 3} \over {\left( {\sqrt x - 1} \right)\left( {\sqrt x + 2} \right)}} + {1 \over {\sqrt x - 1}} + {1 \over {\sqrt x + 2}}} \right):{1 \over {x - 1}} \cr & \,\,\,\, = {{3x + 3\sqrt x - 3 + \sqrt x + 2 + \sqrt x - 1} \over {\left( {\sqrt x - 1} \right)\left( {\sqrt x + 2} \right)}}.\left( {x - 1} \right) \cr & \,\,\,\, = {{3x + 5\sqrt x - 2} \over {\left( {\sqrt x - 1} \right)\left( {\sqrt x + 2} \right)}}.\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right) \cr & \,\,\,\, = {{\left( {3\sqrt x - 1} \right)\left( {\sqrt x + 2} \right)\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)} \over {\left( {\sqrt x - 1} \right)\left( {\sqrt x + 2} \right)}} \cr & \,\,\,\, = \left( {3\sqrt x - 1} \right)\left( {\sqrt x + 1} \right). \cr} \)
Chọn C.