Câu hỏi
Khai triển đa thức \(P\left( x \right) = {\left( {2x - 1} \right)^{1000}}\) ta được \(P\left( x \right) = {a_{1000}}{x^{1000}} + {a_{999}}{x^{999}} + ... + {a_1}x + {a_0}\). Mệnh đề nào sau đây là đúng?
- A \({a_{1000}} + {a_{999}} + ... + {a_1} = {2^n}\)
- B \({a_{1000}} + {a_{999}} + ... + {a_1} = {2^n} - 1\)
- C \({a_{1000}} + {a_{999}} + ... + {a_1} = 1\)
- D \({a_{1000}} + {a_{999}} + ... + {a_1} = 0\)
Lời giải chi tiết:
\( + )\)Thay \(x = 1\) vào \(P\left( x \right)\) có: \(P\left( 1 \right) = {\left( {2 - 1} \right)^{1000}} = {1^{1000}} = 1\)\(\left( 1 \right)\)
\( + )\)Thay \(x = 1\) vào khai triển \(P\left( x \right)\) có: \(P\left( 1 \right) = {a_{1000}} + {a_{999}} + ... + {a_1} + {a_0}\) \(\left( 2 \right)\)
Từ \(\left( 1 \right)\)và \(\left( 2 \right)\)\( \Rightarrow \)\({a_{1000}} + {a_{999}} + ... + {a_1} + {a_0} = 1\)\( \Leftrightarrow {a_{1000}} + {a_{999}} + ... + {a_1} = 1 - {a_0}\)(*)
\( + )\)\({a_0}\) là hệ số của \({x^0}\) :
Số hạng tổng quát của \(P\left( x \right)\)là: \({T_{k + 1}} = C_{1000}^k.{\left( {2x} \right)^{1000 - k}}.{\left( { - 1} \right)^k}\)\( = C_{1000}^k{.2^{1000 - k}}.{\left( { - 1} \right)^k}.{x^{1000 - k}}\)
+ Số hạng chứa \({x^0}\)\( \Rightarrow {x^0} = {x^{1000 - k}}\)\( \Leftrightarrow k = 1000\)
Khi đó hệ số của số hạng chứa \({x^0}\)là: \({a_0} = C_{1000}^{1000}{.2^{1000 - 1000}}.{\left( { - 1} \right)^{1000}} = 1\)
(*) \( \Rightarrow {a_{1000}} + {a_{999}} + ... + {a_1} = 1 - 1 = 0\)
Chọn D.