Câu hỏi
Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) thỏa mãn \(f'\left( x \right) > 0\,\,\,\forall x \in \left( {0;1} \right),\) \(f'\left( x \right) < 0\,\,\,\forall x \in \left( {1;2} \right).\) Khẳng định nào sau đây là đúng?
- A Hàm số đã cho nghịch biến trên \(\left( {0;1} \right)\) và đồng biến trên \(\left( {1;2} \right).\)
- B Hàm số đã cho nghịch biến trên \(\left( {0;1} \right)\) và nghịch biến trên \(\left( {1;2} \right).\)
- C Hàm số đã cho đồng biến trên \(\left( {0;1} \right)\) và đồng biến trên \(\left( {1;2} \right).\)
- D Hàm số đã cho đồng biến trên \(\left( {0;1} \right)\) và nghịch biến trên \(\left( {1;2} \right).\)
Phương pháp giải:
+) Hàm số \(y = f\left( x \right)\) đồng biến trên \(\left( {a;\;b} \right) \Leftrightarrow f'\left( x \right) \ge 0\;\;\forall x \in \left( {a;\;b} \right).\)
+) Hàm số \(y = f\left( x \right)\) nghịch biến trên \(\left( {a;\;b} \right) \Leftrightarrow f'\left( x \right) \le 0\;\;\forall x \in \left( {a;\;b} \right).\)
Lời giải chi tiết:
Ta có: \(f'\left( x \right) > 0\,\,\forall x \in \left( {0;\,\,1} \right) \Rightarrow \) hàm số \(y = f\left( x \right)\) đồng biến trên \(\left( {0;\,\,1} \right).\)
\(f'\left( x \right) < 0\,\,\forall x \in \left( {1;\,\,2} \right) \Rightarrow \) hàm số \(y = f\left( x \right)\) nghịch biến trên \(\left( {1;\,\,2} \right).\)
Chọn D.