Câu hỏi
Tập xác định của hàm số \(y = \tan \left( {2x - \dfrac{\pi }{3}} \right)\)là:
- A \(D = \mathbb{R}\backslash \left\{ {\dfrac{\pi }{4} + k\pi |k \in \mathbb{Z}} \right\}.\)
- B \(D = \mathbb{R}\backslash \left\{ {\dfrac{{5\pi }}{{12}} + k\pi |k \in \mathbb{Z}} \right\}.\)
- C \(D = \mathbb{R}\backslash \left\{ {\dfrac{\pi }{2} + k\pi |k \in \mathbb{Z}} \right\}.\)
- D \(D = \mathbb{R}\backslash \left\{ {\dfrac{{5\pi }}{{12}} + k\dfrac{\pi }{2}|k \in \mathbb{Z}} \right\}.\)
Lời giải chi tiết:
\(y = \tan \left( {2x - \dfrac{\pi }{3}} \right) = \dfrac{{\sin \left( {2x - \dfrac{\pi }{3}} \right)}}{{\cos \left( {2x - \dfrac{\pi }{3}} \right)}}\)
ĐK: \(\cos \left( {2x - \dfrac{\pi }{3}} \right) \ne 0 \Leftrightarrow 2x - \dfrac{\pi }{3} \ne \dfrac{\pi }{2} + k\pi .\)
\( \Leftrightarrow 2x \ne \dfrac{{5\pi }}{6} + k\pi \Leftrightarrow x \ne \dfrac{{5\pi }}{{12}} + k\dfrac{\pi }{2}\,\,\,\left( {k \in \mathbb{Z}} \right).\)
Chọn D.