Câu hỏi
Một vật dao động điều hòa dọc theo trục Ox với phương trình \(x = A\cos \left( {\omega t + \varphi } \right)\)(x tính bằng cm, t tính bằng s). Tại thời điểm t1, vật có li độ x1 = 5 cm và vận tốc \({v_1} = 10\pi \sqrt 3 \) cm/s. Tại thời điểm t2, vật có li độ \({x_2} = 5\sqrt 2 cm\) và vận tốc \({v_2} = 10\pi \sqrt 2 \) cm/s. Lấy \({\pi ^2} = 10\). Biên độ dao động của vật là
- A 0,1 m.
- B 1 m.
- C 15 cm.
- D 20 cm.
Phương pháp giải:
Áp dụng công thức độc lập với thời gian: \({x^2} + \frac{{{v^2}}}{{{\omega ^2}}} = {A^2}\)
Lời giải chi tiết:
Tại thời điểm t1, ta có: \({x_1}^2 + \frac{{{v_1}^2}}{{{\omega ^2}}} = {A^2} \Rightarrow {5^2} + \frac{{{{(10\pi \sqrt 3 )}^2}}}{{{\omega ^2}}} = {A^2}\,\,\left( 1 \right)\)
Tại thời điểm t2, ta có: \({x_2}^2 + \frac{{{v_2}^2}}{{{\omega ^2}}} = {A^2} \Rightarrow {\left( {5\sqrt 2 } \right)^2} + \frac{{{{(10\pi \sqrt 2 )}^2}}}{{{\omega ^2}}} = {A^2}\,\,\left( 2 \right)\)
Từ phương trình (1) và (2) \( \Rightarrow \left\{ \begin{array}{l}A = 10\,\,cm = 0,1\,\,m\\\omega = 2\pi \,\,rad/s\end{array} \right.\)
Chọn A.