Câu hỏi
Ở một nơi trên trái đất, hai con lắc đơn có cùng chiều dài dao động điều hòa với cùng biên độ. Gọi m1 , F1 và m2 , F2 lần lượt là khối lượng , độ lớn lực kéo về cực đại của con lắc thứ nhất và của con lắc thứ hai. Biết m1+ m2 =1,2 kg và 2F2 = 3F1 . Giá trị của m2 là
- A 400 g
- B 720 g
- C 600 g
- D 480 g
Phương pháp giải:
Độ lớn cực đại của lực kéo về của con lắc đơn là :
\({F_{kv{\rm{ }}max}} = mg.sin{\alpha _0}\)
Vì \(2{F_2} = 3{F_1} \Rightarrow 2{m_2}.g.sin{\alpha _0} = 3{m_1}.g.sin{\alpha _0} \Rightarrow 2.{m_2}\; = 3{m_1}\,\,\,\,\left( 1 \right)\)
Kết hợp với điều kiện:
\({m_1} + {m_2} = 1,2kg\,\,{\rm{ }}\left( 2 \right)\)
Giải hệ tìm đc m2
Lời giải chi tiết:
Độ lớn cực đại của lực kéo về của con lắc đơn là :
\({F_{kv{\rm{ }}max}} = mg.sin{\alpha _0}\)
Vì \(2{F_2} = 3{F_1} \Rightarrow 2{m_2}.g.sin{\alpha _0} = 3{m_1}.g.sin{\alpha _0} \Rightarrow 2.{m_2}\; = 3{m_1}\,\,\,\,\left( 1 \right)\)
Kết hợp với điều kiện: \({m_1} + {m_2} = 1,2kg\,\,{\rm{ }}\left( 2 \right)\)
Giải hệ (1) và (2) ta được m1 = 720g
Chọn B.