Câu hỏi
Tính giá trị của các biểu thức sau:
Câu 1: \(A = \,\left( {1 + 2 + 3 + .... + 100} \right)\left( {{1^2} + {2^2} + {3^2} + .... + {{10}^2}} \right)\left( {65.111 - 13.15.37} \right)\)
- A \(A = 0\)
- B \(A = 1\)
- C \(A = 2\)
- D \(A = 3\)
Lời giải chi tiết:
\(\begin{array}{l}A = \left( {1 + 2 + 3 + .... + 100} \right)\left( {{1^2} + {2^2} + {3^2} + .... + {{10}^2}} \right)\left( {65.111 - 13.15.37} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left( {1 + 2 + 3 + .... + 100} \right)\left( {{1^2} + {2^2} + {3^2} + .... + {{10}^2}} \right)\left( {13.5.3.37 - 13.15.37} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left( {1 + 2 + 3 + .... + 100} \right)\left( {{1^2} + {2^2} + {3^2} + .... + {{10}^2}} \right)\left( {13.15.37 - 13.15.37} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \,\left( {1 + 2 + 3 + .... + 100} \right)\left( {{1^2} + {2^2} + {3^2} + .... + {{10}^2}} \right).0\\\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 0.\end{array}\)
Vậy \(A = 0.\)
Chọn A.
Câu 2: \(B = \,\frac{{101 + 100 + 99 + 98 + ........ + 3 + 2 + 1}}{{101 - 100 + 99 - 98 + ......... + 3 - 2 + 1}}\)
- A \(B = 100\)
- B \(B = 101\)
- C \(B = 51\)
- D \(B = 50\)
Lời giải chi tiết:
\(B = \,\frac{{101 + 100 + 99 + 98 + ........ + 3 + 2 + 1}}{{101 - 100 + 99 - 98 + ......... + 3 - 2 + 1}}\)
Ta có: \(101 + 100 + 99 + 98 + ........ + 3 + 2 + 1 = \frac{{101.\left( {101 + 1} \right)}}{2} = 101.51.\)
\(\begin{array}{l}101 - 100 + 99 - 98 + .... + 3 - 2 + 1 = \underbrace {1 + 1 + 1 + .... + 1 + 1}_{51\,\,chu\,\,so\,\,1} = 51.1 = 51.\\ \Rightarrow B = \frac{{101 + 100 + 99 + 98 + ........ + 3 + 2 + 1}}{{101 - 100 + 99 - 98 + ......... + 3 - 2 + 1}}\\\,\,\,\,\,\,\,\,\,\,\, = \frac{{101.51}}{{51}} = 101.\end{array}\)
Vậy \(B = 101.\)
Chọn B.
Luyện Bài Tập Trắc nghiệm Toán 6 - Kết nối tri thức - Xem ngay