Câu hỏi
Cho hàm số \(y = f\left( x \right)\) nhận giá trị không âm và liên tục trên đoạn \(\left[ {0;1} \right].\) Đặt \(g\left( x \right) = 1 + 2\int\limits_0^x {f\left( t \right)dt} .\) Biết \(g\left( x \right) \ge {\left[ {f\left( x \right)} \right]^3}\) với mọi \(x \in \left[ {0;1} \right]\). Tích phân \(\int\limits_0^1 {\sqrt[3]{{{{\left[ {g\left( x \right)} \right]}^2}}}dx} \) có gá trị lớn nhất bằng
- A \(4\)
- B \(\dfrac{5}{3}\)
- C \(5\)
- D \(\dfrac{4}{3}\)
Phương pháp giải:
+ Biến đổi giả thiết để có \(f\left( x \right) = \dfrac{{g'\left( x \right)}}{2}\)
+ Thay vào điều kiện còn lại rồi lấy tích phân hai vế, sử dụng phương pháp đưa vào trong vi phân để tính tích phân. Từ đó đánh giá để tìm giá trị lớn nhất của tích phân cần tìm.
Lời giải chi tiết:
Ta có \(g\left( x \right) = 1 + 2\int\limits_0^x {f\left( t \right)dt} \) suy ra \(\left\{ \begin{array}{l}g\left( x \right) - 1 = 2\int\limits_0^x {f\left( t \right)dt} \\g\left( 0 \right) = 1 + \int\limits_0^0 {f\left( t \right)dt} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}g'\left( x \right) = 2f\left( x \right) \Rightarrow f\left( x \right) = \dfrac{{g'\left( x \right)}}{2}\\g\left( 0 \right) = 1\end{array} \right.\)
Mà \(g\left( x \right) \ge {\left[ {f\left( x \right)} \right]^3} \Leftrightarrow g\left( x \right) \ge {\left[ {\dfrac{{g'\left( x \right)}}{2}} \right]^3} \Leftrightarrow \sqrt[3]{{g\left( x \right)}} \ge \dfrac{{g'\left( x \right)}}{2} \Leftrightarrow \dfrac{{g'\left( x \right)}}{{\sqrt[3]{{g\left( x \right)}}}} \le 2\)
Với \(t \in \left[ {0;1} \right]\), Lấy tích phân hai vế ta được
\(\begin{array}{l}\int\limits_0^t {\dfrac{{g'\left( x \right)}}{{\sqrt[3]{{g\left( x \right)}}}}} dx \le \int\limits_0^t {2dx} \Leftrightarrow \int\limits_0^t {{{\left[ {g\left( x \right)} \right]}^{\dfrac{{ - 1}}{3}}}} d\left( {g\left( x \right)} \right) \le 2t\\ \Leftrightarrow 2t \ge \dfrac{3}{2}\left. {{{\left[ {g\left( x \right)} \right]}^{\dfrac{2}{3}}}} \right|_0^t \Leftrightarrow \dfrac{4}{3}t \ge \sqrt[3]{{{g^2}\left( t \right)}} - \sqrt[3]{{{g^2}\left( 0 \right)}}\end{array}\)
mà \(g\left( 0 \right) = 1\) nên \(\sqrt[3]{{{g^2}\left( t \right)}} \le \dfrac{4}{3}t + 1 \Rightarrow \sqrt[3]{{{g^2}\left( x \right)}} \le \dfrac{4}{3}x + 1\)
Từ đó ta có \(\int\limits_0^1 {\sqrt[3]{{{g^2}\left( x \right)}}} \,dx \le \int\limits_0^1 {\left( {\dfrac{4}{3}x + 1} \right)dx} \Leftrightarrow \int\limits_0^1 {\sqrt[3]{{{g^2}\left( x \right)}}} \,dx \le \left. {\left( {\dfrac{2}{3}{x^2} + x} \right)} \right|_0^1 \Leftrightarrow \int\limits_0^1 {\sqrt[3]{{{g^2}\left( x \right)}}} \,dx \le \dfrac{5}{3}\)
Hay giá trị lớn nhất cần tìm là \(\dfrac{5}{3}.\)
Chọn B.