Câu hỏi

Chọn đáp án đúng nhất:

Câu 1: Thực hiện phép tính: \(2\sqrt 9  - 3\sqrt 4 .\)

  • A \(0\)
  • B \(1\)
  • C \(\sqrt 2 \)
  • D \(\sqrt 3 \)

Phương pháp giải:

Sử dụng công thức: \(\sqrt {{A^2}B}  = \left| A \right|\sqrt B  = \left\{ \begin{array}{l}A\sqrt B \,\,\,khi\,\,\,A \ge 0\\ - A\sqrt B \,\,\,khi\,\,\,A < 0\end{array} \right..\)

Lời giải chi tiết:

Ta có: \(2\sqrt 9  - 3\sqrt 4  = 2\sqrt {{3^2}}  - 3\sqrt {{2^2}}  = 2.3 - 3.2 = 0.\)

Chọn A.


Câu 2: Rút gọn biểu thức: \(\sqrt {\frac{{28{{\left( {a - 2} \right)}^2}}}{7}} ,\) với \(a > 2.\)

  • A \(4 - 2a\)
  • B \(2a - 4\)
  • C \(a - 2\)
  • D \(2 - a\)

Phương pháp giải:

Sử dụng công thức: \(\sqrt {{A^2}B}  = \left| A \right|\sqrt B  = \left\{ \begin{array}{l}A\sqrt B \,\,\,khi\,\,\,A \ge 0\\ - A\sqrt B \,\,\,khi\,\,\,A < 0\end{array} \right..\)

Lời giải chi tiết:

\(\sqrt {\frac{{28{{\left( {a - 2} \right)}^2}}}{7}}  = \sqrt {4{{\left( {a - 2} \right)}^2}}  = \sqrt {{{\left[ {2\left( {a - 2} \right)} \right]}^2}}  = \left| {2\left( {a - 2} \right)} \right| = 2\left( {a - 2} \right) = 2a - 4.\,\,\,\,\left( {do\,\,\,a > 2 \Rightarrow a - 2 > 0} \right).\)

Vậy với \(a > 2\) thì \(\sqrt {\frac{{28{{\left( {a - 2} \right)}^2}}}{7}}  = 2a - 4.\)

Chọn B.


Câu 3: Tìm tọa độ các giao điểm của đồ thị hàm số \(y = {x^2}\) và đồ thị hàm số \(y = 3x - 2.\)

  • A \(A\left( {2;\,\,4} \right),\,\,B\left( {1;\,\, - 1} \right).\)
  • B \(A\left( { - 2;\,\,4} \right),\,\,B\left( { - 1;\,\,1} \right).\)
  • C \(A\left( { - 2;\,\,4} \right),\,\,B\left( { - 1;\,\, - 1} \right).\)
  • D \(A\left( {2;\,\,4} \right),\,\,B\left( {1;\,\,1} \right).\)

Phương pháp giải:

Giải phương trình hoành độ giao điểm của hai đồ thị hàm số để tìm hoành độ giao điểm rồi thế vào 1 trong 2 công thức hàm số để tìm tung độ giao điểm rồi kết luận.

Lời giải chi tiết:

Xét phương trình hoành độ giao điểm của hai đồ thị hàm số ta có:

 \(\begin{array}{l}\,\,\,\,\,\,\,{x^2} = 3x - 2\\ \Leftrightarrow {x^2} - 3x + 2 = 0 \Leftrightarrow {x^2} - 2x - x - 2 = 0\\ \Leftrightarrow x\left( {x - 2} \right) - \left( {x - 2} \right) = 0 \Leftrightarrow \left( {x - 2} \right)\left( {x - 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 2 = 0\\x - 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 2 \Rightarrow y = {2^2} = 4 \Rightarrow A\left( {2;\,\,4} \right)\\x = 1 \Rightarrow y = {1^2} = 1 \Rightarrow B\left( {1;\,\,1} \right)\end{array} \right..\end{array}\)

Vậy hai đồ thị hàm số cắt nhau tại hai điểm phân biệt \(A\left( {2;\,\,4} \right),\,\,B\left( {1;\,\,1} \right).\)

Chọn D.



Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay