Câu hỏi
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:
Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:
- A \(2\).
- B \(3\).
- C \(1\).
- D \(4\).
Phương pháp giải:
* Định nghĩa tiệm cận ngang của đồ thị hàm số \(y = f(x)\).
Nếu \(\mathop {\lim }\limits_{x \to + \infty } f(x) = a\,\)hoặc\(\,\mathop {\lim }\limits_{x \to - \infty } f(x) = a \Rightarrow y = a\) là TCN của đồ thị hàm số.
* Định nghĩa tiệm cận đứng của đồ thị hàm số \(y = f(x)\).
Nếu \(\mathop {\lim }\limits_{x \to {a^ + }} f(x) = + \infty \,\)hoặc \(\mathop {\lim }\limits_{x \to {a^ + }} f(x) = - \infty \,\)hoặc \(\mathop {\lim }\limits_{x \to {a^ - }} f(x) = + \infty \,\)hoặc \(\mathop {\lim }\limits_{x \to {a^ - }} f(x) = - \infty \,\)thì \(x = a\) là TCĐ của đồ thị hàm số.
Lời giải chi tiết:
\(\mathop {\lim }\limits_{x \to + \infty } f(x) = 3,\,\,\mathop {\lim }\limits_{x \to - {1^ + }} f(x) = + \infty \,\, \Rightarrow \) Đồ thị có 1 TCN là \(y = 3\) và 1 TCĐ là \(x = 1\).
Chọn: A