Câu hỏi

Cho đường tròn \((C):\,\,{(x - 2)^2} + {(y + 3)^2} = 25.\) Phương trình tiếp tuyến của \((C)\) tại điểm \(B\left( { - 1;1} \right)\) là:

  • A \(x - 2y - 3 = 0\)
  • B \(3x - 4y - 7 = 0\)
  • C \(x - 2y + 3 = 0\)
  • D \(3x-4y + 7 = 0\)

Phương pháp giải:

Đường thẳng \(\Delta \) tiếp xúc với đường tròn \(\left( {O,R} \right)\) tại \(A \in \left( {O,R} \right) \Leftrightarrow OA \bot \Delta \) tại A

Lời giải chi tiết:

Đường tròn \(\left( C \right)\) có tâm \(I\left( {2; - 3} \right) \Rightarrow \overrightarrow {IB}  = \left( { - 3;4} \right)\) 

d  là tiếp tuyến của \(\left( C \right)\) tại B \( \Rightarrow IB \bot d \Rightarrow \overrightarrow {IB} \) là 1 VTPT của d

\( \Rightarrow \)  Phương trình d: \( - 3\left( {x + 1} \right) + 4\left( {y - 1} \right) = 0 \Leftrightarrow 3x - 4y + 7 = 0\)

Chọn D.


Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay