Câu hỏi
Cho hai biểu thức:
\(A = \frac{x}{{x - 3}}\,\,\, ;\,\,\,\,B = \frac{{2x}}{{x + 5}} - \frac{{{x^2} - 15x}}{{{x^2} - 25}}\,\,\,\,\left( {x \ne 0;x \ne 3;x \ne \pm 5} \right)\)
Câu 1:
Tính giá trị của biểu thức \(A\) tại \(x\) thỏa mãn \(\left| {x - 2} \right| = 1\);
- A \(\frac{{ - 1}}{2}\)
- B \(\frac{3}{2}\)
- C \(\frac{{ - 3}}{4}\)
- D \(\frac{3}{4}\)
Phương pháp giải:
Áp dụng định nghĩa giá trị tuyệt đối: \(\left| x \right| = a \Rightarrow \left[ \begin{array}{l}x = a\\x = - a\end{array} \right.\)
Lời giải chi tiết:
Điều kiện: \(x \ne 3.\)
Ta có: \(\left| {x - 2} \right| = 1 \Leftrightarrow \left[ \begin{array}{l}x - 2 = 1\\x - 2 = - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1 + 2\\x = - 1 + 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 3\,\,(ktm)\\x = 1\,\,\,(tm)\end{array} \right.\)
Thay \(x = 1\) vào biểu thức \(A\) ta có: \(\frac{1}{{1 - 3}} = \frac{1}{{ - 2}} = - \frac{1}{2}\)
Vậy giá trị của biểu thức \(A\) tại \(x\) thỏa mãn \(\left| {x - 2} \right| = 1\) là \( - \frac{1}{2}\).
Chọn A.
Câu 2:
Rút gọn biểu thức \(Q = B:A\);
- A \(Q = \frac{{x - 5}}{{x - 3}}\)
- B \(Q = \frac{x}{{x - 3}}\)
- C \(Q = \frac{{x - 3}}{{x - 5}}\)
- D \(Q = \frac{x}{{x - 5}}\)
Phương pháp giải:
Thực hiện phép chia \(B:A\) để tìm biểu thức \(Q\).
Lời giải chi tiết:
Điều kiện: \(x \ne 0,\,\,x \ne 3;\,\,x \ne \pm 5.\)
\(\begin{array}{l}B:A = \left( {\frac{{2x}}{{x + 5}} - \frac{{{x^2} - 15x}}{{{x^2} - 25}}} \right):\frac{x}{{x - 3}}\\\,\,\,\,\,\,\,\,\,\,\,\,\, = \left[ {\frac{{2x\left( {x - 5} \right)}}{{\left( {x + 5} \right)\left( {x - 5} \right)}} - \frac{{{x^2} - 15x}}{{\left( {x + 5} \right)\left( {x - 5} \right)}}} \right].\frac{{x - 3}}{x} = \frac{{2x\left( {x - 5} \right) - \left( {{x^2} - 15x} \right)}}{{\left( {x + 5} \right)\left( {x - 5} \right)}}.\frac{{x - 3}}{x}\\\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{2{x^2} - 10x - {x^2} + 15x}}{{\left( {x + 5} \right)\left( {x - 5} \right)}}.\frac{{x - 3}}{x}\,\,\, = \frac{{{x^2} + 5x}}{{\left( {x + 5} \right)\left( {x - 5} \right)}}.\frac{{x - 3}}{x}\\\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{x\left( {x + 5} \right)}}{{\left( {x + 5} \right)\left( {x - 5} \right)}}.\frac{{x - 3}}{x}\,\, = \frac{x}{{x - 5}}.\frac{{x - 3}}{x} = \frac{{x - 3}}{{x - 5}}.\end{array}\)
Vậy \(Q = B:A = \frac{{x - 3}}{{x - 5}}\) .
Chọn C.
Câu 3:
Tìm \(x\) để \(Q > 1\).
- A \(x < 5\)
- B \(x > 5\)
- C \(x > 1\)
- D \(x < 1\)
Lời giải chi tiết:
Ta có: \(Q = \frac{{x - 3}}{{x - 5}} = \frac{{x - 5 + 2}}{{x - 5}} = 1 + \frac{2}{{x - 5}}\)
Do đó để \(Q > 1\) thì \(1 + \frac{2}{{x - 5}} > 1 \Leftrightarrow \frac{2}{{x - 5}} > 0 \Leftrightarrow x - 5 > 0 \Leftrightarrow x > 5\,\,\,(tmdk)\).
Vậy với \(x > 5\) thì \(Q > 1\).
Chọn B.